
 1 

Iterative Single Data Algorithm (ISDA) Manual 

 

ISDA (Copyright (C) 2004-2007 Te-Ming Huang and Vojislav Kecman)  

is an efficient software for solving large-scale machine learning (data mining) problems by using 

so-called kernel machines a.k.a. support vector machines. ISDA solves two classic supervised 

learning from data (statistics) problems – classification (a.k.a. pattern recognition) and multivari-

able regression (a.k.a. curve, surface and hyper-surface fitting, a.k.a. approximation). ISDA algo-

rithm solves exactly quadratic programming (QP) based learning problem developed for kernel 

machines in an iterative way. It belongs to the class of working set solvers (same as, for example, 

the Sequential Minimal Optimization (SMO) algorithm). Theoretical foundations of the ISDA 

algorithm are presented and can be found in following publications: 
 

1. Kecman V., Vogt M., Huang T-M., On the Equality of Kernel AdaTron and Sequential Minimal 

Optimization in Classification and Regression Tasks and Alike Algorithms for Kernel Machines, 

Proc. of the 11
th

 European Symposium on Artificial Neural Networks, ESANN 2003, pp. 215 – 

222, Bruges, Belgium, 2003 

2. Huang T.–M., Kecman V., Bias Term b in SVMs Again, Proc. of the 12
th

 European Symposium on 

Artificial Neural Networks, ESANN 2004, pp. 441-448, Bruges, Belgium, 2004 

3. Kecman V., T.-M. Huang, M. Vogt, Chapter ‘Iterative Single Data Algorithm for Training Kernel 

Machines from Huge Data Sets: Theory and Performance’, in a Springer-Verlag book, ‘Support 

Vector Machines: Theory and Applications’, Ed. L. Wang, Series: Studies in Fuzziness and Soft 

Computing, Vol. 177, pp. 255-274, 2005 

4. Huang T.-M., V. Kecman, I. Kopriva, Kernel Based Algorithms for Mining Huge Data Sets, Su-

pervised, Semi-supervised, and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 

2006, see www.learning-from-data.com 
 

References 1) and 2) can be downloaded from the site www.support-vector.ws while 3) and 4) can 

be found on the Springerlink site, or in the mentioned books. The site www.learning-from-data.com 

contains more information on ISDA including the download of ISDA algorithms for both classi-

fication and regression written in Matlab. Please note that ISDA is free for academic purposes. 

For commercial purposes please contact authors. 
 

In a supervised learning one uses a set of input-output training data pairs to design a decision 

function in a classification or an approximating function in regression. Thus, a data set D = {[x(i), 

y(i)] ∈ ℜ m
 × ℜ, i = 1,..., n} consists of n pairs (x1, y1), (x2, y2), …, (xn, yn), where the inputs x are 

the m-dimensional vectors x ∈ ℜ m
 and, system responses are either integer values y ∈ [1, 2, 3, ..] 

in classification, or they are continuous values y ∈ ℜ  in regression problems. (Note that even in 

the case of two classes i.e., for dichotomization tasks, we don’t use labeling +1 and -1). 
 

For designing a good model one needs both a training data set and a test data set. Usually, the 

available data set D is split in two sets by using 80% or 90% or 95% randomly chosen data pairs 

from the data set D as a training data set and the rest of 20% or 10% or 5% of the data is used for 

the test. (Percentages are problem dependant.). Thus, test data are data which the learning ma-

chine has not seen during the training phase. After the training, the test data is used to calculate a 

performance of a model expressed by a suitable norm or cost function (usually the number of 

misclassified data in classification and, sum of error squares or sum of absolute values or similar 
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cost function in regression is used). The best model is the one having minimal error norm on the 

test data. Note that during the running of ISDA you will be asked to provide both data sets.  

 

Format of data 
 

ISDA accepts data in several formats, notably the ones in csv format and the ones either in a s-

parse format or in a dense one as given below. A standard csv formatted data can be created in 

Excel, Matlab, or in other data creating software. Note that only the dense data can use csv for-

mat. 

 For both classification and regression data must be organized as follows, the first column 

must be the desired (target) vector y and the rest of columns are the columns of the input vector x. 

Thus, if you solve the problem having 1,000 training data and the input vectors xi (vectors of fea-

tures) are 3-dimensional your training data set must be organized as below 

 

1 11 12 13

2 21 22 23

1,000 1,000 1 1,000 2 1,000 3

y x x x

y x x x

y x x x
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  
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In the case of a regression yi is the measured (observed, sampled, recorded) value of the output 

when the input was [xi1   xi2   xi3]. Similarly, for a classification yi is a label (class belonging) of 

the input[xi1   xi2   xi3].  

 The csv (Comma Separated Values) is a standard Excel format. Note that you can create 

data in a csv format directly in Matlab as follows: Assume your training data are organized in a 

matrix as shown above and the matrix has the name datatrain. The command 
 

dlmwrite('C:\ISDA\data_for_training.csv',datatrain) 
 

will create a file data_for_training.csv within the ISDA folder which can be used by ISDA  

 

 

Labeling in Classification 

Note that ISDA can solve multi-class problems and not only the two-class (a.k.a. dichotomiza-

tion) one. This defines the labels used in ISDA software. The label yi must be i if the input (vec-

tor of features) xi  = [xi1   xi2   xi3] belongs to class i. Thus, for example if the first data belongs 

to class 2, second one to class 4, third one to class 3, and the fourth one to the class 5, the first 

four entries to vector y are [2  4  3  5]
T
. Note that even in the case of two classes you can use nei-

ther labels [1, 0] nor [-1, 1]. Use labeling 1 for class 1, and 2 for class 2 instead. 

 

Sparse and Dense Input Data Format for both Classification and Regression 

In addition to a csv format, ISDA can take data in both sparse and dense format as the input. For 

first time solving a given problem with ISDA, you need to convert your data set into these two 

formats or into the csv format. Here we introduce the concepts of sparse and dense data format. 

The only difference will be that in the sparse format zeros (0) are not given as an input making in 

this way data files much smaller if many input components are zeros.  
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Assume you have 7 data originating from a three-class problem and the input is 4 dimensional as 

given below by their numerical values 

 

1 0 1.1 0.3 1.1

2 2 0 1.1 0.7

2 1.1 3 0 1.1

2 0 0 0 2

3 5 0.5 1 2.3

2 2 0 4.1 0

2 0 1.1 0 3.7

− 
 

− 
 −
 
 
 −
 

− 
 
 

 

 

Data in DENSE format are to be given as follows, 

 

 

 

 

 

 

 

 

 

and the data in SPARSE format are to be given as, 

 

 

 

 

 

 

 

 

 

Having the training data set and the test data one ready, one can use ISDA software for designing 

good kernel machines model. The GUI version of ISDA is the software that enables model selec-

tion, meaning choosing the best parameters of the model (e.g., order of polynomial, width of 

Gaussian kernel, penalty parameter C, size of the ε-tube in regression, etc). This is achieved by 

cross-validation procedure, namely by calculation of the error norm on the test data sets and by 

picking up the parameters that ensure the lowest error norm.  

 

ISDA with GUI is a user friendly software but in order to make its use as smooth as possible the 

friendly user guidelines are presented below.  

 

1   1:0   2:1.1   3:0.3   4:-1.1 

2   1:-2   2:0   3:1.1   4:0.7 

2   1:1.1   2:-3   3:0   4:1.1 

2   1:0   2:0   3:0   4:2 

3   1:5   2:-0.5   3:1   4:2.3 

2   1:2   2:0   3:-4.1   4:0 

2   1:0   2:1.1   3:0   4:3.7 

1   2:1.1   3:0.3   4:-1.1 

2   1:-2   3:1.1   4:0.7 

2   1:1.1   2:-3   4:1.1 

2   4:2 

3   1:5   2:-0.5   3:1   4:2.3 

2   1:2   3:-4.1 

2   2:1.1   4:3.7 
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ISDA GUI USER’S GUIDE 
 

There are few phases of using ISDA: 

 

1. Save your isda.exe file in an appropriate folder. 

2. Training phase: Choose the data you want to model which can be in the same folder as the 

isda.exe or in a different one. The training data file shall be opened in the first ISDA window 

and the test one in the second ISDA window. 

3. Saving the results of the learning - after the learning (training, optimization) phase, the result-

ing files will be saved in the subfolder result, which will be in the same folder where the 

isda.exe was. The results for each parameters set will be stored under the names 

SVCRBFi.dat, SVRRBFi.dat, SVCPOLYi.dat, and SVRPOLYi.dat where i will be number go-

ing from 0 to the number of models (e.g., in classification, for C = [1 10 100], and Order of 

Polynomial = [1 2 3 4 5 6], 3*6 = 18 models will be stored under the names from 

SVCPOLY0.dat to SVCPOLY17.dat). Obviously C and R stand for classification and regres-

sion, while RBF and POLY describe whether Gaussian kernels or Polynomial ones have been 

used. In addition to these files, two more files will always be stored - SVC_opt_model.dat 

and simulation_log.dat files. As its name says the SVC_opt_model.dat contains the model that 

produces the smallest test error. This file should be the model used in the so-called Predic-

tion, or Application phase. This is the last stage in using ISDA software, and it is described 

below. 

4. Prediction or Application phase – as its names suggests is the use of the best selected model 

on the new data set. 

 

Note that there is one intermediate step between the phases 3 and 4 which works for classification 

problems only (because there are only two design parameters, C and either σ of Gaussians or the 

polynomial’s order). After training, there is an option to save the current simulation results, by 

clicking the “Save Result” button on ISDA window. Give the name to the file, e.g. results, which 

will be saved in the same folder where your isda.exe routine is. By using the attached Matlab rou-

tine plot_result.m you can plot the model selection results as contour and surface plot in Matlab 

(by running plot_result(‘results’) ), and see in this way influence of the penalty parameter C and 

either width parameter σ (for Gaussian kernel) or order of polynomial (for polynomial kernel) on 

error cost function. 

 

TRAINING PHASE 
 

CLASSIFICATION 

In the first ISDA window (shown next) two selections shall be done: 

a) classification task is selected by default, 

b) open the training data file 
(Note that appearance of the windows e.g., color setting, depends upon your machine settings. Maple color scheme is 

shown here except the last window on page 8 which is in a classic windows color scheme). 
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After opening it only first 100 training data pairs will be shown. Scaling the inputs between -1 

and +1 will be done unless the Apply Scaling box is unticked. We highly recommend doing the 

scaling. Note that you see true inputs values in the table.  

 Clicking Next opens the second ISDA window where all the rest of selections shall be 

done as given below: 
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a) Open Test Data. (The data set which will be not seen by machine during the training, 

and which will be used for calculation of error norm i.e., cost function, or perform-

ance), 

b) Choose what type of kernel you want to use. Choices are – Gaussian RBF kernel, 

Linear kernel and the Polynomial one. 

c) Select the penalty parameter C between the minimal and maximal value. Number of 

steps defines how many C parameters you want to use during the model optimiza-

tion. Picking up Number of steps = 2 will run the calculations for minimal and 

maximal C value, while choosing Number of steps = 3 leads to computing for mini-

mal C value, (minimal + maximal)/2 C value and for the maximal C, and so on. Note 

that you should always input the lower bound of the C value on the left hand side text 

box and the upper bound on the right hand side one. 

d) Stopping Criterion τ  will stop updating the dual variables 
i

α  when the differences 

between the desired values yi and model outputs fi for support vectors (SVs) become 

smaller than τ . Choose either 0.01 or 0.001. Higher precision leads to huge increase 

in computing time without any significant improvement of the model. First few simu-

lations should be tried by τ = 0.01, or even bigger, say 0,.025 or 0.05 and later, after 

getting the feelings about the appropriate values for C and σ, or for a polynomial or-

der, one can use τ  = 0.001. 

e) If Gaussian kernel is selected you will be offered two values to start with minimal 

one being equal to ‘average’ distance between the training data points calculated by 

0

2

1
m

n
σ =

−
(where n stands for the number of data and m is a dimensionality of 

the input vector) and the maximal one equals to 5 0σ . You may select any other value 

for the two sigmas. If you had chosen polynomial kernel you will be asked to select a 

minimal and a maximal order of polynomial.  

f) Number of steps defines how many sigmas or orders of polynomials you want to use 

during the model optimization. Note that if you have picked 4 C values and 5 sigmas 

you are aiming at calculating 20 different kernel machines models from which the 

best one will be selected based on the merit (minimal error norm i.e., cost function). 

g) Size of cache in MB should be chosen in order to speed up the calculations (which 

may take a lot of time for huge data sets and/or highly overlapped classes and/or 

wrong choice of design parameters, or for some other reason). The most demanding 

situation may be if all the data are selected as the SVs. For example, if you have 

5,000 training data pairs and all are chosen as SVs the memory needed for storing the 

Hessian matrix involved in calculations is 200 MB. On the other side if you have 

500,000 training data pairs and only 25 have been chosen as SVs requires ‘only’ 100 

MB for a storage. Thus, right choice of the cache size depends upon the guess what 

will be the final size of the model defined primarily by the number of data and num-

ber of SVs. If the cache size is too small the problem will be solved but it will take 

longer CPU time. 

h) 1/k for Bias Term - defines whether we want to have the model without bias term 

(then 1/k for Bias Term = 0) or we want to have a bias term (1/k for Bias Term = 0.05, 
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0.1 or some other value). Note that choosing bigger values leads to worsening the 

condition number of the Hessian matrix involved, and thus to the longer computa-

tions. As the starter begin with 1/k for Bias Term = 0. Including a bias term leads to 

the decrease in the number of SVs, which usually results in faster training. However, 

the right choice of the bias is problem dependant.  
 

Once the training phase starts the third window (as shown below) will be opened showing the re-

sults in a table and the progress of the training phase. In the case of classification the test error 

rate presented is calculated as follows 
#  

100
test

misclassified data

n
 i.e., it is given in %.  

 
After the training phase, you can save the results by clicking on Save Results button and giving 

the name of the result file (say you gave the name results), or finish without saving the results. 

The single purpose of saving the results is to show the simulation results given in the table of the 

third window graphically within the Matlab by calling the program plot_result('results'). Note that 

this works for classification tasks only. (Sure, both the plot_result.m and results must be in the 

same folder which should be made a working folder in Matlab). If you are not pleased with re-

sults obtained and shown in the table and you want to do model design by other parameters selec-

tion just click Exit, and run isda.exe again with new parameters. 

 

 

REGRESSION 

ISDA software for regression operates in its biggest part same as for classification. There is only 

a single difference in a parameters definition procedure in respect to classification stemming from 

the fact that the required precision of the regression model has to be defined in advance by pre-

scribing the size of the so-called ‘ε-tube’. 

 

First, select the Regression and open the training data on the first ISDA window. 
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On the second ISDA windows there is only one difference in respect to the classification prob-

lem, and this is a selection of the size of the so-called Vapnik’s insensitivity parameter ε which 

defines the ‘ε-tube’ within which all the training data must lie (except the so called free SVs 

which will be placed on the ‘ε-tube’ and the so-called bounded SVs that are allowed to lie outside 

the ‘ε-tube’). Isda.exe will offer you two default values (minimal and maximal ε) which you can 

readily change to suit your design requirements. 

 

Note also that, unlike in classification, you will not be able to see the results of regression in 

graphics form by using the program plot_result.m. However, feel free to adapt plot_result.m for 

plotting regression results for the best ‘ε-tube’, or for all the ‘ε-tubes’. (If you do so send us your 

code please.) 

 

Root-Mean-Squared Error (RMS) presented in the 3
rd

 window as given above, is the error cost 

function for the test data and it is calculated as 
( )

2

1

n

it iai
y y

RMS
n

=
−

=
∑

, where (yit  - yia) is 

the error or difference between the test target value yit  and the SVMs’ approximation yia for the 

test input xi and n stands for the number of test data used. 

 

PREDICTION i.e., APPLICATION PHASE 
 

 
 

The main purpose of the predict.exe program is to apply the models developed in the training 

phase to the new, previously unseen, data. (Sure, you can run your best model on either training 

or test data just to check the performance of ISDA GUI software, and this will repeat the run on 

the opened data set by the best model chosen). 

 

You will generally like to use your best model on new data sets. There are two ways how this can 

be done. First and the simplest, or the user the most friendly, way is to run predict.exe and open 

the desired data sets. Before doing any of prediction the new data set should be prepared as fol-

lows below 
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Preparation of the New (Test, Application) Data Set for predict.exe 

The data format can be either in the csv or in the sparse and dense format described in the previ-

ous section. The first column is again equal to the desired value of the output yi,. In the case 

where the output yi is unknown, i.e. the class belonging or the true output of data i is unknown, 

and it should be predicted by the SVMs model, the value of yi in the test data file should be set to 

0 for both classification and regression.  For example, the first four points in the input matrix be-

low are unknown where the rest are known. 
 

0 0 1.1 0.3 1.1

0 2 0 1.1 0.7

0 1.1 3 0 1.1

0 0 0 0 2

3 5 0.5 1 2.3

2 2 0 4.1 0

2 0 1.1 0 3.7

− 
 

− 
 −
 
 
 −
 

− 
 
 

 

 

Note that in this case, the error rate produced by the program is no longer accurate, since the true 

outputs of the first four points are unknown by the program. A click on the save result button will 

save the outputs predicted by the SVMs model into a file. 
 

For regression, three different measurements of errors are computed and saved in 

SVR_opt_model.dat - the RMS error, Mean Absolute Error (MAE) and Vojislav Kecman’s error 

(VK error). RMS is defined above, and the other two are defined below 
 

1

n

it iai
y y

MAE
n

=
−

=
∑

,                          

( )
2

1

| | | |
| | | |t t

t t

n

it iai

y t y t

y y

RMS n
VK error

e eσ σ

=

− −

−

= =
+ +

∑

y y
y y

 

 

where 
ty

σ  stands for the variance of the test target vector yt and | |
t

y  is its absolute mean value. 

VK error is related to the ‘level of Gaussian noise’ in data. Given enough training data, spoiled by 

zero means Gaussian noise and providing a good SVM’s model output (approximant) ya of the 

noiseless target vector yt the value of VK error will reproduce the level of noise very good. Thus, 

VK error = 0.25 hints that the level of noise is 25%. Note that the same can’t be said for RMS and 

MAE, because their values are heavily influenced by the variance 
ty

σ  and mean 
t

y  of the target 

vector yt. 
 

In the true application case when none of the outputs is known the first column will be all zeros. 

After using the predict .exe you will be asked to save the result file which will contain class la-

bels and output values for classification and regression respectively. Note that the values of error 

functionals at the bottom of the result file does not have any meaning in pure application case. 
 

Often, however, you may want to have the model at hand and use it in a more flexible way (say 

within the Matlab, Mathematica, Mathcad, Maple, C, or some other programming language). This 

can readily be done by taking all the information from the resulting files SVC_opt_model.dat i.e., 
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SVR_opt_model.dat stored in the result folder for a classification and regression respectively. All 

the basic information about the model obtained can be retrieved from these two files as follows 

below. 

 

CLASSIFICATION 

The file SVC_opt_model.dat contains the following information for a case of 2-dimensional input 

and 2 classes (dichotomization task): 
 

svm_type svc  

kernel_type RBF  

data_type Dense  

sigma 4.000000  

C 10.000000  

dim 2  

scale_factor 0.027397 1.465753 0.400000 1.000000  

nr_class 2  

bias -0.051012  

nSV 4  

10.000000 1:-0.397260 2:1.000000 

4.570504 1:-0.726027 2:-1.000000 

-8.951533 1:-0.589041 2:1.000000 

-10.000000 1:-0.342466 2:0.600000 
 

From the lines above we see the complete model for classification which uses RBF Gaussian ker-

nels having width parameter σ = 4 and penalty parameter (upper bound on dual variables αi ) C = 

10. The input is 2-dimensional and both inputs are scaled between -1 and 1 by using following 

scaling formula for the input xi = [xi1   xi2]
T
 : xi1s = 0.0274 xi1  - 1.466 and  xi2s = 0.4xi2 - 1. Finally, 

the model has a bias term b =  -0.051012 and 4 support vectors (SVecs) with the weights and po-

sitions as follows: 
 

1
st
 SVec’s weight is 10, it is placed at [-0.39726  1]

T
, (and thus, this is a bounded SVec), 

2
nd

 SVec’s weight is 4.570504, it is placed at [-0.726027  -1]
T
, (thus, this is a free SVec), 

3
rd

 SVec’s weight is -8.951533, it is placed at [-0.589041  1]
T
, (thus, this is a free SVec), 

4
th
 SVec’s weight is -10, it is placed at [-0.342466  0.6]

T
, (thus, this is a bounded SVec). 

 

Thus, the file SVC_opt_model.dat contains the data describing following SVM’s model given the 

new input vector xnew, 
 

 

 

0.397 0.726 0.589 0.342
( ) 10 , 4.571 , 8.952 , 10 , 0.051 

1 1 1 0.6
new new new new newy g g g g

 −   −   −   −        
= + − − −              

−              
x x x x x

 

 

where g(x,ci)=

2
1

2 4 , 1, 4
i

e i

− 
−  

  =

x c

  are the values of 4 selected Gaussian kernels (support vectors). 

Because we are solving a classification problem the closeness of y(x) to the label 1 or 2 will de-

fine the class belonging of an input vector x. 
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REGRESSION 

One can build a regression model from the best SVM stored in the file SVR_opt_model.dat in an 

absolutely same procedure as described for a classification above.  
 

Note that in the case of regression the file containing the best model SVR_opt_model.dat will be 

of almost ‘identical’ structure as the file in classification. SVR_opt_model.dat looks as given be-

low (note that instead of Gaussian kernels, now the polynomial ones have been used): 
 

svm_type svr  

kernel_type POLY  

data_type Dense  

degree 3.000000  

C 100.000000  

dim 12  

scale_factor 0.022480 1.000142 0.020000 1.000000 0.073314 1.033724 4.115226 2.584362 

0.383215 2.364629 0.020597 1.059732 0.181861 1.205430 0.086957 1.086957 0.003817 

1.713740 0.212766 3.680851 0.005043 1.001614 0.055188 1.095475  

epsilon 11.000000  

bias 0.059121  

nSV 24  

0.473072 1:-0.991848 2:-0.560000 3:-0.604106 4:-0.810700 5:0.800345 6:-0.886715 7:0.414352  

   8:-0.478261 9:-0.454198 10:0.382979 11:1.000000 12:-0.900110  

0.304813 1:-0.954954 2:-1.000000 3:0.401760 4:-0.094650 5:0.673884 6:0.921730 7:-0.833361  

   8:-0.652174 9:-0.175573 10:-0.553191 11:0.860810 12:-0.891280  

-0.775058 1:-0.999076 2:-1.000000 3:-0.159091 4:-0.226337 5:-0.053842 6:0.604531 7:-

0.749868 8:-1.000000 9:-0.671756 10:0.787234 11:1.000000 12:-0.660596  

... 

… 

… 
 

Also note that the input is 12-dimensional as well as that we have shown only the first three SVe-

cs out of 24 support vectors obtained. The regression model is now, 
 

[ ]

24 24
3 3 3 3 3

1 1 2 2 3 3 24 24

1 1

1

2

3

12

( ) ( , ) ( 1) ( 1) ( 1) ( 1) ( 1)

= 0.473072 -0.991848 -0.560000 -0.604106 -0.900110 

t t t t t

new i i new i i new new new new new

i i

new

new

new

new

y v K b v b v v v v b

x

x

x

x

= =

= + = + + = + + + + + + + + +

 
 
 
 


 

∑ ∑x x x x x x x x x x x x x�

�

�

3

1 0.059121 

 
 
 
 + + +
 
 
 
 

�

 

Finally, note that the abbreviated form of the final SVM regression model is shown above. In particu-

lar, for a given new input (measurement, observation, sample) xnew only the first (in)complete kernel 

value for the first support vector and xnew is shown together with the bias at the end. (In fact, only first 

three components and the 12
th
 one are shown in the row vector above). There are also 23 kernels 

(coming from the rest of 23 support vectors in between first kernel and bias) missing in expression for 

y(xnew). However, they should be built and calculated in the same way as the first term shown.  


