December 1, 2005 / Vol. 30, No. 23 / OPTICS LETTERS

3135

Single-frame multichannel blind deconvolution by
nonnegative matrix factorization with
sparseness constraints

Ivica Kopriva

Department of Electrical and Computer Engineering, The George Washington University, 801 22nd Street N.W.,
Washington, D.C. 20052

Received July 13, 2005; accepted August 8, 2005

Single-frame multichannel blind deconvolution is formulated by applying a bank of Gabor filters to a blurred
image. The key observation is that spatially oriented Gabor filters produce sparse images and that a mul-
tichannel version of the observed image can be represented as a product of an unknown nonnegative sparse
mixing vector and an unknown nonnegative source image. Therefore a blind-deconvolution problem is for-
mulated as a nonnegative matrix factorization problem with a sparseness constraint. No a priori knowledge
about the blurring kernel or the original image is required. The good experimental results demonstrate the
viability of the proposed concept. © 2005 Optical Society of America
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The goal of blind deconvolution (BD) is to reconstruct
the original image from an observation degraded by
spatially invariant blurring and noise. Neglecting the
noise term, the process is modeled as a convolution of
a point-spread function (PSF) h(x,y) with an original
source image f(x,y) as follows:

M M
glx,y) = EM 2 hs,Ofx+sy+10), (1)

where M denotes the PSF support size. If the PSF is
known, a number of algorlthms are available to re-
construct original image f(x, y) However, it is not al-
ways possible to measure or obtain information about
a PSF, which is why BD algorithms are important. A
comprehensive comparison of BD algorithms is given
in Ref. 1. BD approaches can be divided into those
that estimate the blurring kernel h(s,t) first and
then restore the original image by some of the non-
blind methods! and those that estimate the original
image f(x,y) and the blurring kernel simultaneously.
To estimate the blurring kernel, one must either
know or estimate a support size. Also, quite often a
priori knowledge about the nature of the blurring
process is assumed to be available when an appropri-
ate parametric model of the blurring process is used.

It is not always possible to know the characteristics
of the blurring process. Methods that estimate the
blurring kernel and the original image simulta-
neously use either statistical or deterministic prior
knowledge of the original image, the blurring kernel,
and the noise,” which leads to a computationally ex-
pensive maximum-likelihood estimation that is usu-
ally implemented by an expectation maximization al-
gorithm. In addition, exact distribution of the
original image required by a maximum-likelihood al-
gorithm are usually unknown. To overcome these dif-
ficulties an approach was proposed in Ref. 3 that was
based on a quasi-maximum likelihood with an ap-
proximation of the probability-density function. It
was, however, assumed that the original image has a
sparse or super-Gaussian distribution, which is gen-
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erally not true because image distributions are
mostly sub-Gaussian. To overcome that difficulty it
was proposed in Ref. 3 to apply a so-called sparsify-
ing transform to a blurred image. However, the de-
sign of such a transform requires knowledge of at
least the typical class of image to which the original
image belongs, in which case training data can be
used to design the sparsifying transform. Multivari-
ate data analysis methods such as independent com-
ponent analysis (ICA),* mlght be used to solve a BD
problem as a blind source-separation problem, where
unknown blurring would be absorbed into what is
known as a mixing matrix. However, the multichan-
nel image required by ICA is not always available.
Even if it were, it would require the blurring kernel
to be nonstationary, as it is for blurring caused by at-
mospheric turbulence® but is not for out-of-focus blur,
for example. For all the reasons discussed above, an
approach to single-frame multichannel BD that re-
quires a minimum of a priori information about the
blurring process and the original image would be of
great interest. One such approach was proposed in
Ref. 6. It was based on a bank of two-dimensional
(2-D) Gabor filters’ used because of their ability to
produce multichannel filtering and to decompose an
input image into sparse images containing intensity
variations over a narrow range of frequency and ori-
entation, which is character1st1c of the visual cortices
of some mammals The concept is illustrated in Fig.
1; 2-D Gabor filters are shown in Fig. 2 for two spa-
tial frequencies and four orientations. The top two
rows of Fig. 2 show real and imaginary parts of 2-D
Gabor filters for one spatial frequency; the bottom
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Fig. 1. Image restoration by nonnegative matrix factoriza-
tion and 2-D Gabor filters.
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Fig. 2. Gabor filters for two spatial frequencies and four
orientations. The top two rows show real and imaginary
parts of 2-D Gabor filters for one spatial frequency; the bot-
tom two rows, for another spatial frequency. Each column
shows one of the four orientations.

two rows, those for another spatial frequency. Each
column shows one of the four orientations. The key
insight in Ref. 6 was that the original image f(x
+s,y+t) can be approximated by a Taylor series ex-
pansion about flx,y), giving flx+s,y+t)=f(x,y)

+sf,(x,y) +tf,(x,y)+... . This enables us to rewrite
Eq. (1) as
g(x,y) = aif(x,y) + asfy(x,y) + agfy(x,y) + ..., (2)

where a;=3Y ,SM  h(s,t), ay=S" ¥  sh(s,t),
a3=2ﬁ_M2£_M th(s,t), and f, and f, are spatial de-
rivatives in the x and y directions, respectively. When
Gabor filters are applied to a blurred image, a new

set of observed images is obtained as
gi1(x,y) = anfle,y) + apfi(x,y) + ajsfy(x,y) + ..., (3)

where an=3" ¥  h(s,t), ap
=sM SM shi(s,t), and a;=3" M  th](s,t),
where h;(s,t) represents convolution of the appropri-
ate [th Gabor filter with A(s,t), which leads to this
multichannel representation:

T

g ap Qs as
ng a1 Qi Q13 g
G=| . |=| . . &' |=AF, @
‘T fyT
g ar; Qre ars

to which ICA algorithms can be applied to extract
source image f. The lexicographical (vector) represen-
tation assumed in expression (4) for original image f
and observed images g and g; is obtained by a row-
stacking procedure. As can be seen, no a priori infor-
mation about a blurring kernel is assumed so far.
There is, however, a critical condition that must hold
for the source image for the ICA algorithm to work.
Images f, f,, and f, must be statistically independent.
In general they are not, as was already observed in
Ref. 8. Here two key contributions are made that will
enable us to use a single-frame multichannel repre-
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sentation and make no assumption about the statis-
tical nature of the source image. First, we observe
that both f, and f, can be written as a convolution of
the original image f(x,y) with some directional fil-
ters, giving f,(x,y) = Zi\i_NEZ_N h.(s,t)f(x+s,y+t) and
fy(x,) EEQL_NE?L_N h,(s,t)f(x+s,y+t), where N rep-
resents the order of the directional filters. Obviously,
for large N, directional filters will well approximate
spatial derivatives along the x and y directions. Be-
cause N does not itself play a role in a BD algorithm,
we can assume that it is arbitrarily large. Conse-
quently, the approximation symbol may be replaced
by an equality symbol. By using the same expansion
for flx+s,y+t) as for Eq. (2) we obtain

N N
fx(x,y)=[ > > hx(s,t)]f(x,y)
s==N t=—N

N N
4{ 2 2 th(S,t)}fx(x,y)

s=—N t=—N

N N
+|: > > thx(s,t):|fy(x,y)+ e,

s=-N t=—-N

N N

fy(x,y)=[ > > hy(s,t)]f(x,y)

s==N t=—

N N
+{ 2 2 Shy(S,t)}fx(X,y)

=-N t=-N

N N
+{ > > thy(s,t)]fy(x,y)+ cee.(B)

s=-N t=—N

Because h, and h, are directional filters, the second
and third terms in the expansions of f.(x,y) and
fy(x,y) in Egs. (5) will be either equal to zero or small
compared with the first term. This enables us to
write Eq. (2) as g(x,y)=(a;+asa +aza)f(x,y)
=aqf(x,y), where it follows from Eqgs. (5) that a;*
=3N VSN _yhis,t) and a?=SN (SN Gk (s,t). Fol-
lowing the same logic, Eq. (3) can be rewritten as
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Fig. 3. Kurtosis of the blurred and Gabor-filtered images.
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Fig. 4. Defocused image.
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Fig. 5. Reconstructed image.

gi(x,y)=a;f(x,y), and matrix equation (4) becomes

gT a
T -
g
G=|". |=| 7 |#M=af", (6)
gLT ary

which suggests the existence of only a source image
in the linear image observation model. In expression
(6), T denotes a transpose. The second key insight is
that spatially oriented Gabor filters will produce im-
ages with sparse (super-Gaussian) distributions and,
because source image f is mostly sub-Gaussian, an
unknown mixing vector a must be sparse. Because a
and f are nonnegative we are able to formulate a BD
problem as a nonnegative matrix factorization (NMF)
problem with a sparseness constraint.” Estimates of
mixing vector a and source image f are obtained as a
solution of the minimization problem:

@, =min 3 [G,; - @f"), ] (7)
ij
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under sparseness constraint S, imposed on the esti-
mate of mixing vector a. S, is a number from 0 to 1,

with 1 meaning that all components of vector a are
small and 0 meaning the opposite. % Refer to Ref. 9 for
detailed descriptions of the computational steps asso-
ciated with the NMF algorithm and to http:/
www.cs.helsinki.fi/patrik.hoyer/ for its MATLAB
implementation, which was used in the experiment
reported. Refer to Ref. 9 and references therein for
more details about NMF algorithms. Because this is
a deterministic approach, no assumption about the
statistical nature of either blur or the source image is
required. Only a sparseness constraint must be im-
posed on unknown mixing vector a. The first coeffi-
cient in a can initially be approximated by 1, because
it represents the original blurring process. The rest of
the coefficients can initially be set to 0 because they
correspond to sparse images. Therefore the initial
value of the unknown mixing vector is set to a®
=[100...0]". A sparseness constraint S, must be de-
fined for the NMF algorithm. To obtain a truly unsu-
pervised image restoration algorithm we estimate S,
from multichannel image G as a ratio between the
number of sparse images L, and the overall number
of images L+ 1. To estimate L, kurtosis « of each im-
age in G is estimated. Image g; is considered to be
sparse if (g;)> 4. In the experiments I set §=0.2.
This completes the derivation of the single-frame
multichannel BD algorithm that is defined without
use of any a priori information about the blurring
process or the original image. I comment here that a
sparseness constraint might be imposed on the
source image too if it is known that a particular im-
aging modality will generate a sparse image, as could
be the case in astronomy or microscopy. In Fig. 3 the
estimated kurtosis value of the blurred image shown
in Fig. 4 is given in column 1 and the Gabor-filter-
generated images by columns 2-17. The estimated
sparseness constraint was S,=0.82. The blurred im-
age was obtained by a defocused digital camera. The
reconstructed image is shown in Fig. 5.

References

1. M. R. Banham and A. K. Katsaggelos, IEEE Signal
Process. Mag. 14(3), 24 (1997).

2. D. Kundur and D. Hatzinakos, IEEE Signal Process.
Mag. 13(5), 43 (1996).

3. M. M. Bronstein, A. Bronstein, M. Zibulevsky, and Y. Y.
Zeevi, IEEE Trans. Image Process. 14, 726 (2005).

4. A. Hyvéarinen, J. Karhunen, and E. Oja, Independent
Component Analysis (Wiley, 2001).

5. I. Kopriva, Q. Du, H. Szu, and W. Wasylkiwskyj, Opt.
Commun. 233, 7 (2004).

6. S. Umeyama, Electron Commun. Jpn. Part 3 84, 1
(2001).

7. J. G. Daugman, IEEE Trans. Acoust., Speech, Signal
Process. 36, 1169 (1988).

8. M. Numata and N. Hamada, presented at the 2004
Research Institute on Signal Processing (RISP)
International Workshop on Nonlinear Circuit and
Signal Processing, Honolulu, HI, March 5-7, 2004.

9. P. O. Hoyer, J. Mach. Learn. Res. 5, 1457 (2004).



