
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
 

The development of the iterative learning schemes is the only way for the SVMs’ 

learning when the training data set is huge (say more than 5,000 data pairs). It is the 

mainstream research field in the learning from empirical data by support vector ma-

chines. Recently, we (Kecman, Vogt, Huang, 2003) have shown that the kernel 

AdaTron (Anlauf, Biehl, 1989; Frieß, Cristianini, Campbell, 1998; Veropoulos, 2001) 

and SMO (Platt, 1999; Vogt, 2002), when the positive definite kernels are used with-

out bias, are equal procedures. Even more, both are equal to the classic Gauss-Seidel 

(i.e., SOR) algorithm. We have also shown that such iterative ‘single data based’ 

learning algorithm (ISDA) converges to the optimal solution under the box constraints. 

In a matrix notation, the solution to both problems above is obtained by an iterative 

solving of the linear system of equations K fα =α =α =α =  subject to corresponding box con-

straints (see the details in the paper). Before presenting iterative algorithms with bias 

term, we discuss some recent presentations of the bias b utilization. It is well known 

that for positive definite kernels there is no need for bias b (Kecman, 2001). However, 

one can use it and this means implementing a different kernel. In (Poggio et all, 2001) 

it was also shown that when using positive definite kernels, one can choose between 

two types of solutions for both classification and regression. The first one uses the 

model without bias term (i.e., 
1
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an explicit bias b. For the second one
1
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=
= +∑x x x  and it was shown 

that f(x) is a function resulting from a minimization of the functional shown below 
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where K* = K - a (for an appropriate constant a) and K is an original kernel function 

(more details can be found in the mentioned report). This means that by adding a con-

stant term to a positive definite kernel function K, one obtains the solution to the func-

tional I[f] where K* is a conditionally positive definite kernel. Interestingly, similar 

type of model was also presented in (Mangasarian, Musicant, 1999). However, their 

formulation is done for the classification problems only. They reformulated the opti-

mization by adding the b2/2 term to the cost function || w ||2/2. This is equivalent to an 

addition of 1 to the original kernel matrix K. As a result, they changed the original 

classification dual problem to the optimization of the following one 
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2. Iterative Single Data Algorithm (ISDA) for SVMs with Bias 
 

In (Kecman, Vogt, Huang, 2003), for the SVMs’ models when positive definite ker-

nels are used without a bias term b, the learning algorithms for classification and re-

gression (in a dual domain) were solved with box constraints only, originating from 

minimization of a primal Lagrangian in respect to the weights wi. However, there re-

mains an open question - how to apply the proposed ISD scheme for the SVMs that 

do use explicit bias term b. Such general nonlinear SVMs in classification and regres-

sion tasks are given below, 
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where ( )iΦ x  is the l-dimensional vector that maps n-dimensional input vector x into 

the feature space. (Note that for a classification model in (3a), we usually take the 

sign of f(x) but this is of lesser importance now). For the SVMs’ models (3), there are 

also the equality constraints originating from minimizing the primal objective 

function in respect to the bias b as given below, 
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The motivation for developing the ISDA for the SVMs with an explicit bias term b 

originates from the fact that the use of an explicit bias b seems to lead to the SVMs 

with less support vectors. This fact can often be very useful for both the data (infor-



 

mation) compression and the speed of learning. Below, we present an iterative learn-

ing algorithm for the classification SVMs (3a) with an explicit bias b, subjected to the 

equality constraints (4a). (The same procedure is developed for the regression SVMs 

but due to the space constraints we do not go into these details here. However we give 

some relevant hints for the regression SVMs with bias b). The problem to solve is, 

 min 
1

2
w

T
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s.t. yi[ ( )
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T
b+Φw x ] ≥ 1, i = 1, …, l,    (5b) 

 

which can be transformed into its dual form by minimizing the primal Lagrangian  
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in respect to w and b by using 0/pL =∂ ∂w  and 0, i.e.,/pL b=∂ ∂  by exploiting  
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The standard change to a dual problem is to substitute w from (7) into the primal La-

grangian and this leads to a dual Lagrangian problem below, 
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subject to the box constraints (9) and, in a standard SVMs formulation, also to the 

equality constraints (10) as given below  
 

αi ≥ 0, i = 1, …, l and  
1

0
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There are three major avenues (procedures, algorithms) possible in solving the dual 

problem (8), (9) and (10).  
 

The first one is the standard SVMs algorithm which imposes the equality constraints 

(10) during the optimization and in this way ensures that the solution never leaves a 

feasible region. In this case the last term in (8) vanishes. After the dual problem is 

solved, the bias term is calculated by using unbounded Lagrange multipliers 
iα  

(Kecman, 2001; Schölkopf, Smola, 2002) as follows 
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Note that in a standard SMO iterative scheme the minimal number of training data 

points enforcing (10) and ensuring staying in a feasible region is two.  
 

Below, we show two possible ways how the ISDA works for the SVMs containing an 

explicit bias term too. In the first method, the cost function (5a) is augmented with the 

term 0.5kb2 (where k ≥  0). Note that this step is related to solving the dual problem 



 

by penalty method where a decrease in k leads to the stronger imposing of equality 

constraints (see comments below). After forming the primal Lagrangian as well as 

using 
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=
= ∑  (coming from / 0pL∂ ∂ =w  and 

/ 0pL b∂ ∂ = ) one arrives to the dual problem not containing the explicit bias b. Actu-

ally, the optimization of a dual Lagrangian is reformulated for the SVMs with a bias b 

by applying ‘tiny’ changes only to the original matrix K. For the nonlinear classifica-

tion problems ISDA stands for an iterative solving of the following linear system 
 

 k lK 1α =α =α =α =        (12a) 

s.t. 0 ≤ αi ≤ C, i = 1, ..., l     (12b) 

 

where Kk(xi, xj)  = yiyj(K(xi, xj) + 1/k), 1l is an l-dimensional unity vector and C is a 

penalty factor equal to infinity for a hard margin classifier. Note that during the up-

dates of αi, the bias term b must not be used because it is implicitly incorporated 

within the Kk matrix. Only after the solution vector αααα  in (12) is found, the bias b 

should be calculated either by using unbounded Lagrange multipliers αi as given in 

(11), or by implementing the equality constraints from / 0pL b∂ ∂ = and given as  
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Note, however, that all the Lagrange multipliers, meaning both bounded (clipped to C) 

and unbounded (smaller than C) must be used in (13). Both equations, (11) and (13), 

result in the same value for the bias b. Thus, using the SVMs with an explicit bias 

term means that in the ISDA proposed above original kernel is changed, i.e., another 

kernel function is used. This means that the alpha values will be different for each k 

chosen, and so will be the value for b. However, the final SVM as given in (3) is pro-

duced by original kernels. Namely, f(x) is obtained by adding the sum of weighted 

original kernel values and corresponding bias term b.  
 

The first method presented above and aimed at an extending of the ISDA to the SVMs 

with bias is related to the classic (quadratic) penalty methods for solving optimization 

problems with equality constraints. Namely, the addition of 0.5kb2 to (5a) changes the 

last term of (8) to 
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=∑ , which is equivalent to applying a penalty parameter 

of 1/k to the L2 norm of the equality constraint (10). As a result, for a large value of 

1/k, the solution will have a small L2 norm of (10). In other words, as k approaches 

zero a bias b converges to the solution of the standard QP method that enforces the 

equality constraints. However, we do not use the ISDA with small parameter k values 

here, because the condition number of the matrix Kk increases as 1/k rises. Further-

more, the strict fulfillment of (10) may not be needed in obtaining a good SVM. Here, 

in classifying the MNIST data with Gaussian kernels, the value k = 10 proved to be a 

very good one justifying all the reasons for its introduction (fast learning, small num-

ber of support vectors and good generalization). 
 



 

The second method in implementing the ISDA for SVMs with the bias term b is to 

work with original cost function (5a) and keep imposing the equality constraints dur-

ing the iterations as suggested in (Veropoulos, 2001). The learning starts with b = 0 

and after each epoch the bias b is updated by applying a secant method as follows 
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where 
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=
=∑  represents the value of equality constraint after each epoch. In 

the case of regression SVMs, equation (14) is used by implementing the correspond-

ing regression’s equality constraints, namely ( )*

1

l

i ii
ω α α

=
= −∑ . This is different 

from (Veropoulos, 2001) where an iterative update after each data pair is proposed. In 

our SVMs regression experiments such an updating led to an unstable learning. Also, 

in an addition to changing expression for ω, both the K matrix, which is now (2l, 2l) 

matrix, and the right hand side of (12a) which becomes (2l, 1) vector, should be 

changed too and formed as given in (Kecman, Vogt, Huang, 2003). 

3. Performance of an ISD Learning Algorithm and Comparisons 
 

To measure the relative performance of different ISDAs, we ran all the algorithms 

with RBF Gaussian kernels on a MNIST dataset with 576-dimensional inputs (Dong 

et all, 2003), and compared the performance of our ISD algorithm with LIBSVM 

V2.4 (Chang et all, 2003) which is one of the fastest and the most popular SVM 

solvers at the moment based on the SMO type of an algorithm. The MNIST dataset 

consists of 60,000 training and 10,000 test data pairs. To make sure that the compari-

son is based purely on the nature of the algorithm rather than on the differences in 

implementation, our encoding of the algorithms are the same as LIBSVM’s ones in 

terms of caching strategy (LRU–Least Recent Used), data structure, heuristics for 

shrinking and stopping criterions. The only significant difference is that instead of 

two heuristic rules for selecting and updating two data points at each iteration step 

aiming at the maximal improvement of the dual objective function, our ISDA selects 

the worse KKT violator only and updates its αi at each step.  
 

Also, in order to speed up the LIBSVM’s training process, we modified the original 

LIBSVM routine to perform faster by reducing the numbers of complete KKT check-

ing without any deterioration of accuracy. All the routines were written and compiled 

in Visual C++ 6.0, and all simulations were run on a 2.4 GHz P4 processor PC with 

1.5 Gigabyte of memory under the operating system Windows XP Professional. The 

shape parameter σ2
of an RBF Gaussian kernel and the penalty factorC are set to be 

0.3 and 10 (Dong, J.X. et all, 2003). The stopping criterion τ and the size of the cache 

used are 0.01 and 250 Megabytes. The simulation results of different ISDA against 

both LIBSVM are presented in tables 1 and 2, and in a figure 1. The first and the sec-

ond column of the tables show the performance of the original and modified LIBSVM 

respectively. The last three columns show the results for single data point learning 

algorithms with various values of constant 1/k added to the kernel matrix in (12a). For 

k = ∞, ISDA is equivalent to the SVMs without bias term, and for k = 1, it is the same 

as the classification formulation proposed in (Mangasarian and Musicant, 1999). 



 

Table 1: Simulation time for different algorithms 
 
 

 
LIBSVM 
original 

LIBSVM 
modified 

Iterative single data algorithm (ISDA) 
k = 10                k = 1                k = ∞ 

Class Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) 

0 1606 885 794 800 1004 

1 740 465 491 490 855 

2 2377 1311 1181 1398 1296 

3 2321 1307 1160 1318 1513 

4 1997 1125 1028 1206 1235 

5 2311 1289 1143 1295 1328 

6 1474 818 754 808 1045 

7 2027 1156 1026 2137 1250 

8 2591 1499 1321 1631 1764 

9 2255 1266 1185 1410 1651 

Time 
Increase 

+95.3% +10.3% 0 +23.9% +28.3% 

 

 

 

Table 2: Number of support vectors for each algorithm 
 
 

 
LIBSVM 
original 

LIBSVM 
modified 

Iterative single data algorithm (ISDA) 
k = 10                k = 1                k = ∞ 

Class # SV (BSV) # SV (BSV) # SV (BSV) # SV (BSV) # SV (BSV) 

0 2172 (0) 2172 (0) 2132 (0) 2162 (0) 2682  (0) 

1 1440 (4) 1440 (4) 1453 (4) 1429 (4) 2373 (4) 

2 3055 (0) 3055 (0) 3017 (0) 3047 (0) 3327 (0) 

3 2902 (0) 2902 (0) 2897 (0) 2888 (0) 3723 (0) 

4 2641 (0) 2641 (0) 2601 (0) 2623 (0) 3096 (0) 

5 2900 (0) 2900 (0) 2856 (0) 2884 (0) 3275 (0) 

6 2055 (0) 2055 (0) 2037 (0) 2042 (0) 2761 (0)  

7 2651 (4) 2651 (4) 2609 (4) 3315 (4) 3139 (4) 

8 3222 (0) 3222 (0) 3226 (0) 3267 (0) 4224 (0) 

9 2702 (2) 2702 (2) 2756 (2) 2733 (2) 3914 (2) 

Average 
# of SV 

2574 2574 2558 2639 3151 

BSV = Bounded SVs 
 

Table 1 illustrates the running time for each algorithm. The ISDA with k = 10 was the 

quickest and required the shortest average time (T10) to complete the training. The 

average time needed for the original LIBSVM is almost 2T10 and the average time for 

a modified version of LIBSVM is 10.3 % bigger than T10. This is contributed mostly 

to the simplicity of the ISD algorithm. One may think that the improvement achieved 

is minor, but it is important to consider the fact that approximately more than 50% of 

the CPU time is spent on the final checking of the KKT conditions in all simulations. 

During the checking, the algorithm must calculate the output of the model at each 

datum in order to evaluate the KKT violations. This process is unavoidable if one 

wants to ensure the solution’s global convergence, i.e. that all the data do satisfy the 

KKT conditions with precision τ indeed. Therefore, the reduction of time spent on 

iterations is approximately double the figures shown. Note that the ISDA slows down 



 

for k < 10 here. This is a consequence of the fact that with a decrease in k there is an 

increase of the condition number of a matrix Kk, which leads to more iterations in 

solving (12). At the same time, implementing the no-bias SVMs, i.e., working with k 

= ∞, also slows the learning down due to an increase in the number of support vectors 

needed when working without bias b. 
 

Table 2 presents the numbers of support vectors selected. For the ISDAs, the numbers 

reduce significantly when the explicit bias term b is included. One can compare the 

numbers of SVs for the case without the bias b (k = ∞) and the ones when an explicit 

bias b is used (cases with k = 10 and k = 1). Because identifying less support vectors 

speeds the overall training definitely up, the SVMs implementations with an explicit 

bias b are faster than the version without bias.  
 

In terms of a generalization, or a performance on a test data set, all algorithms had 

very similar results and this demonstrates that the ISDAs produce models that are as 

good as the standard QP, i.e., SMO based, algorithms. The percentages of the errors 

on the test data are shown in figure 1. Notice the extremely low error percentages on 

the test data sets for all numerals. 
 

Figure 1: The percentage of the error on the test data 
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4. Conclusions 

We demonstrate the use, the calculation and the effect of incorporating an explicit 

bias term b in the SVMs trained with the ISDA. The simulation results show that 

models generated by ISDAs (either with or without the bias term b) are as good as the 

standard QP (i.e., SMO) based algorithms in terms of a generalization performance. 

Moreover, ISDAs with an appropriate k value are faster than the standard SMO algo-

rithms on large scale classification problems (k = 10 worked particularly well in all 

our simulations using Gaussian RBF kernels). This is due to both the simplicity of 



 

ISDAs and the decrease in the number of SVs chosen after an inclusion of an explicit 

bias b in the model. The simplicity of ISDAs is the consequence of the fact that the 

equality constraints (4) do not need to be fulfilled during the training stage. In this 

way, the second order heuristics is avoided during the iterations. Thus, the ISDA is an 

extremely good tool for solving large scale SVMs problems containing huge training 

data sets because it is faster than, and it delivers ‘same’ generalization results as, the 

other standard QP (SMO) based algorithms. The fact that an introduction of an ex-

plicit bias b means solving the problem with different kernel suggests that it may be 

hard to tell in advance for what kind of previously unknown multivariable decision 

(regression) function the models with bias b may perform better, or may be more suit-

able, than the ones without it. As it is often the case, the real experimental results, 

their comparisons and the new theoretical developments should probably be able to 

tell one day. As for the single data based learning approach presented here, the future 

work will focus on the development of even faster training algorithms.  
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