Supervised, Semi-supervised, and Unsupervised Learning

Kernel Based Algorithms for Mining Huge Data Sets

Supervised Learning Algorithms:

Kecman, V., Huang T.-M., Vogt M., Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets: Theory and Performance, Chapter in 'Support Vector Machines: Theory and Applications, Ed. Wang, L., Series: Studies in Fuzziness and Soft Computing, Springer Verlag, Vol. 177, pp.255-274, 2005.

Huang, T.-M., Kecman, V., Gene Extraction for Cancer Diagnosis using Support Vector Machines- An Improvement,  Artificial Intelligence in Medicine (2005) 35, pp.185-194, Special Issue on Computational Intelligence Techniques in Bioinformatics, 2005.

Huang, T.-M., Kecman, V., Gene Extraction for Cancer Diagnosis using Support Vector Machines: An improvement and comparison with nearest shrunken centroid method. Lecture Notes in Computer Science 3696, pp. 617-624, 2005.

Huang, T.-M. Kecman. V., Bias Term b in SVMs Again, 12th European Symposium on Artificial Neural Network, ESANN 2004, pp. 441-448, Bruges, Belgium, April 28-30, 2004.  

Kecman, V., Vogt, M., Huang, T.-M., On the Equality of Kernel AdaTron and Sequential Minimal Optimization in Classification and Regression Tasks and Alike Algorithm for Kernel Machines, 11th European Symposium on Artificial Neural Networks, ESANN 2003, pp. 215-222, Bruges, Belgium, April 23-25, 2003.   

 

Semi-Supervised Learning Algorithms:

Huang, T.-M., Kecman, V., Semi-supervised Learning from Unbalanced Labeled Data – An Improvement, 'International Journal of Knowledge-Based and Intelligent  Engineering Systems', Special Issue: Innovational Soft Computing,  IOS Press,  Vol 10., No. 1, pp. 21-27, 2006.

Huang, T.-M., Kecman, V., Performance Comparisons of Semi-Supervised Learning Algorithms. Proceedings of the Workshop on Learning with Partially Classified Training Data, at the 22nd International Conference on Machine Learning, ICML 2005, W5,pp 45-49, Germany, 2005.

Huang, T.-M., Kecman, V., Semi-supervised Learning from Unbalanced Labeled Data – An Improvement, 'Knowledge Based and Emergent Technologies Relied Intelligent Information and Engineering Systems', Eds. Negoita, M. Gh., at al., Lecture Notes in Computer Science 3215, pp. 765-771, Springer Verlag, Heidelberg, 2004. Best Paper Award and Best Student Contribution Paper Award.  

back to top

Unsupervised Learning Algorithms:

Du, Q., Kopriva, I.   and Szu, H.,  Independent Component Analysis for Hyperspectral Remote Sensing, Optical Engineering, vol. 45, 017008, January 2006.

Kopriva, I., Single Frame Multichannel Blind Deconvolution by Non-negative Matrix Factorization with Sparseness Constraint , Optics Letters, Vol. 30, No. 23, pp. 3135-3137, December 1st, 2005 .

Szu, H., Kopriva, I., Unsupervised Learning with Stochastic Gradient,  Neurocomputing, Vol. 68 pp. 130-160, 2005.

Du, Q.,  Kopriva, I. and Szu, H., Independent Component Analysis for Classifying Multispectral Images with Dimensionality Limitation, International Journal of Information Acquisition, vol. 1, no. 3, pp.201-216, September 2004.

Kopriva, I., Du, Q.,  Szu, H. and Wasylkiwskyj, W., Independent Component Analysis Approach to Image Sharpening in the Presence of Atmospheric Turbulence, Optics Communications, Vol. 233 (1-3) pp. 7-14, 2004.

Kopriva, I., Szu, H.H., Persin, A., Optical Reticle Trackers with Multi-Source Dicrimination Capability By Using Independent Component Analysis, Optics Communications, Vol. 203 (3-6) pp. 197-211, 2002.

Szu, H. H., Kopriva, I.,  Artificial Neural Networks for Noisy Image Super-resolution, Optics Communications, Vol. 198 (1-3) pp. 71-81, 2001.

 

 

 
 

Copyright Huang, Kecman and Kopriva © 2006 All Rights Reserved